
IJSRSET151112 | Received: 4 Jan 2015 | Accepted: 12 Jan 2015 | January-February 2015 [(1)1: 90-95]  

Themed Section:  Engineering and Technology 

 

90 

 

Asymmetric key encryption based on pseudorandom number generators 
Alhussain Amanie Hasn 

Peoples' Friendship University of Russia, Moscow 
Faculty of Physical, Mathematical and Natural Sciences 

Department of Information Technology 

 

 
ABSTRACT 
 

Cryptography is a fundamental technique for securing information. In this study, has shown how to design 

asymmetric encryption algorithm based on merging three pseudorandom number generators. The roles of 

pseudorandom number generators, in the proposed algorithm, serve different roles, one of them is helping 

to generate a dynamic representation for each character which gives the strength to the encryption 

algorithm; The proposed encryption algorithm solves the problem of exchange and distribution of private 

keys over the networks; The various examples and implementation of the algorithm prove that it 

exchanges the keys and encrypts successfully all the characters, and serves the goals of cryptography. 

 

Keywords: public key, Asymmetric Key Encryption, Pseudorandom Number Generators, encryption, 

decryption. 

 

 

I. INTRODUCTION 

Cryptography plays an important role in the network 

security. Cryptography is the science of writing in secret 

code. The purpose of cryptography is to protect 

transmitted information from being read and understood 

by anyone except the intended recipient; so this paper 

has designed Asymmetric cryptosystem based on 

pseudorandom number generators to implement and 

achieve this purpose; 

Asymmetric encryption is a form of cryptosystem in 

which encryption and decryption are performed using 

different keys-one is a public key and the other is a 

private one. It is also known as public-key encryption. 

[1][2][3][4][5].Asymmetric encryption transforms 

plaintext into ciphertext using one of the two keys, and 

the plaintext is recovered from the ciphertext using the 

other paired one.[6] 

The concept of public-key cryptography is evolved from 

an attempt to attack one of the most difficult problems 

associated with symmetric encryption, which is key 

distribution, which requires either (1) that two 

communicants already share a key, which somehow has 

been distributed to them; or (2) the use of a key 

distribution centre[7][8][9][10]. 

This paper is proposed an algorithm for asymmetric 

encryption. First, it generates the values of three 

pseudorandom number generators which are Linear 

Congruential, Lagged Fibonacci and Blum Blum Shum 

generators, and three new internal sequences which are 

derived from the previous sequences by applying 

mathematical and logical operands. Each of these 

sequences plays a different role in the proposed 

encryption algorithm; second, it uses the generated 

sequences to encrypt the data; the algorithm would 

generate internally dynamic representation for each 

character, which depends on the private key. 

The rest of the paper is organized as follow: In Section 

II, the proposed Pseudorandom Number Generators 

methods is introduced; Section III discusses about the 

proposed encryption algorithm; Section IV experimental 

results; Section V concludes the paper. 

  

© 2015 IJSRSET | Volume 1 | Issue 1 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099  



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 
 

91 

II. METHODS AND MATERIAL 

2.1 Pseudorandom Number Generators 

A pseudorandom number generator (PRNG), also 

known as a deterministic random bit 

generator (DRBG), is an algorithm for generating a 

sequence of numbers that approximates the properties of 

random numbers [7][8]. Because the pseudorandom 

number generators are periodic and deterministic so this 

article is supposed an algorithm that is used three 

generators together (this gives one more level of the 

security), the methods of PRNG algorithm that are used 

in this algorithm: 

 

 Linear Congruential generator  

The generator is defined by the recurrence relation:  

Xn+1=(a Xn +c)mod m Where X is the sequence of 

pseudorandom values, and m –"modulus" a– the 

"multiplier"; c- the "increment", X0 – the "seed "or 

“initial value” [3]. 

 

 Lagged Fibonacci generator 

The Fibonacci sequence may be described by the 

recurrence relation:  

Xn+1= (Xn+Xn-1) mod m where m modulus, X0 initial 

value [3] 

 

 Blum Blum Shub (B.B.S.) generator 

The generator is defined by the recurrence relation:  

Xn+1=Xn2 mod m where m - modulus, X0 - initial 

value [3].  

 

The algorithm is just required to enter the values of 

linear congruential generator and it will generate the 

values of both Fibonacci and Blum Blum Shub 

generators internally because all of these generators 

have shared the parameters Xn and m. Based on these 

three generators would generate three sequences of 

numbers which each of them plays different roles in the 

algorithm as shown in fig. 1. The sequences are: 

I. ASCII sequence: This is the result of adding both 

linear and Fibonacci generators. It would be used to 

generate dynamic representation for each character 

and is defined by the formula: [(a Xn +c) mod m+ 

(Xn+Xn-1) mod m] mod m. 

II. Cross sequence: this sequence is used to define the 

position of cross point which would be used in the 

encryption algorithm, this sequence is created by the 

following steps: 

a. Convert the values of both linear and Blum Blum 

Shub generators into binary (16 bit) values. 

b. perform sequentially bit by bit the logical 

operators (or, xor, and) between the two 

consecutive values obtained in the previous step;  

c. Take mod m of the previous result, and convert it 

into decimal representation.  

 

III. Encryption sequence: this sequence is used in the 

encryption process and is generated by the following 

steps: 

a. Convert the values of both Fibonacci and blum 

blum shub generators into binary (16 bit) values. 

b. perform sequentially bit by bit the logical 

operators ( xor, and, or) between the consecutive 

values obtained in the previous step; 

c. Take mod m of the previous result, and convert it 

into decimal representation.  

 

(The various generated sequences of numbers, and how 

they are derived with the various roles that are played in 

the proposed algorithm give more levels of the security 

to the algorithm). 

Example of the created sequences with the parameters of 

the private key (initial value=8, modulus=500, multiplier 

=7, increment=6, size=100) is shown in fig. 2.  

 

 
 

Figure 1:  schema of the different Roles of the proposed generators 

 

http://en.wikipedia.org/wiki/Recurrence_relation
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Recurrence_relation
http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Modulo_operation


International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 
 

92 

 
     Figure 2: Example of the different values created by the generators which    

shared the same parameters 

 

2.2 The Proposed Encryption Algorithm: 

A. The Secret Key  

The secret key is consists of five parameters; which 

provide strength to the algorithm rendering it difficult 

for cryptanalysis by intruder (one more level of the 

security). The five parameters of the secret key are: 

Key= {initial value, increment, multiplier, modulus, 

size}[4] 

Initial value, increment, multiplier, modulus are the 

parameters of Linear Congruential method whose values 

are known only to the intended sender and recipient. 

And in the same time (initial value, modulus) is used to 

produce Fibonacci and Blum blum shub sequences of 

numbers internally in the cryptosystem, after that 

internal sequences of number (ASCII , Cross and 

Encryption sequences)are generated.  

size represents the size of sequence in which random 

numbers are stored. 

B. Public key 

Description of the Algorithm: 

The steps to generate public key could be summarized as 

follow: 

1) Generate three random numbers (Rn) in the range 

0-15, and convert them into hexadecimal value 

(HEX (Rn)) 16. 

2) Convert each component of private key into 

hexadecimal value (HEX (PKn)) 16. 

3) Apply XOR between hexadecimal representations 

of both random numbers and private key 

components:      

(HEX (XORn)) 16 =(HEX (Rn)) 16 ⊕ (HEX 

(PKn)) 16. 

4) Convert the values obtained in step3 into binary 

(12bit) representation (HEX (XORn))2 and add the 

binary (12bit) representation of random numbers 

(HEX (Rn))2 to the end of numbers. 

5)  Crossover the two consecutive bytes of data 

obtained in step4 according to the middle of their 

sizes i.e. 6bits; 

6) Convert the produced bytes obtained in step 5 into 

Hexadecimal values (HEX (CrossoverBytes))16. 

7) Public key = sequence of the produced 

hexadecimal numbers obtained in step 6. 

 

Example of applying the public key algorithm: 

 

Step 1: Generate three random numbers (Rn) in the 

range 0-15: 

R1= (11)10= (B) 16; R2= (4)10= (4)16; R3= (14)10= (E) 

16;  

 

Step 2: Convert each component of private key into 

hexadecimal value: 

Initial value= (12)10=(C) 16, modulus= (450)10= 

(1C2)16, 

 Multiplier= (4)10= (4)16, Increment= (10)10= (A) 16, 

size= (500)10= (1F4)16 

 

Step 3: XOR between hexadecimal representations of 

both random numbers and private key components:  

(C)16⊕ (B4E)16 = (B42)16; (1C2)16⊕ (B4E)16 = (A8C)16; 

 (4)16⊕ (B4E)16 = (B4A)16; (A)16⊕ (B4E)16 = (B44)16; 

(1F4)16⊕ (B4E)16 = (ABA)16;  

 

Step 4: Convert the values obtained in step3 into 

binary (12bit) representation and add the binary (12bit) 

representation of random numbers to the end of 

numbers. 

(B42)16= (101101000010) 2; (A8C)16 = (101010001100)2; 

 (B4A)16= (101101001010)2; (B44)16 = (101101000100)2; 

(ABA)16 = (101010111010)2; (B4E)16= (101101001110)2 

 

http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Modulo_operation


International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 
 

93 

Step 5: Crossover the two consecutive bytes of the 

data obtained in step4 according to the middle of their 

sizes:  

 

 
 

Step 6: Convert the produced bytes obtained in step 5 

into Hexadecimal values 
(101101001100)2= (B4C)16 ;( 101010000010)2= (A82)16; 

(101101000100)2= (B44)16 ;( 101101001010)2= (B4A)16; 

(101010001110)2= (A8E)16; ;( 101101111010)2= (B7A)16 

 

Step 7: Public key = sequence of the produced 

hexadecimal numbers obtained in step6. 

 

            Public key=B4C A82 B44 B4A A8E B7A  

(Note: the public key for the same private key is not 

static, but it depends on the generated random numbers 

this gives one more level of security to the algorithm 

[3]). 

 

The public key is sent directly from the sender to the 

receiver, before starting the encryption process by 

separated secret channel, so the receiver would retrieve 

the private key from the public key by reverse the steps 

of obtaining the public key and based on the symmetry 

of the operations involved and the symmetry of XOR 

operation. 

 

C. Encryption Process: 

 

Before starting the encryption process; there is a step of 

preparing and sending the public key to the receiver (this 

step is done just one time), after that a set of characters 

with corresponding values are generated based on the 

addition of the value of ASCII cod to ASCII Sequence 

(which is discussed earlier) let’s call it ASCII table. 

 

Attention should be taken that each character in ASCII 

table must be unique (more conditions and constrains 

implemented inside cryptosystem).the benefit here is 

that the ASCII values would not be static, but they 

would vary depending on the secret key (this is increase 

one more level of security); 

 

The encryption process comprises of the following steps: 

1. Get the value of first character in plaintext from 

ASCII table. 

2. Convert the previous value into binary (8bits) 

3. Apply XOR operation between the obtained value in 

step2, and the binary representation (8bits) of 

Encryption Sequence of numbers. 

4. Take mode 7 of the Cross sequence to get decimal 

values ranging from 0 to 6, which would form cross 

point: Cross Point=mod (Cross Sequence, 7). 

5. Divide each XOR result into two parts according to 

the Cross Point, and convert each part into 

hexadecimal value. 

6. Cipher text would be the sequence of hexadecimal 

numbers that generated in previous step. 

 

D. Decryption Process:  

Before starting the decryption process, if it is the first 

time, a private key should be retrieved from public key 

as descried earlier, then the six sequences of numbers 

are generated, after that ASCII table is created in the 

same way mentioned in encryption process, finally the 

steps of decryption are just reversal of the encryption. 

 

III. RESULTS AND DISCUSSION 

A. Exchange the keys 

Before starting the encryption process, the generated 

public key based on the used private key should be sent 

firstly as mentioned in section 2.2; this gives the 

cryptosystem the ability to exchange the pair of keys 

without caring about the problem of key distributions 

and storing. 

 

 On the Sender side: 

1) Enter the private key that would be used in 

encryption. (As shown in Fig.3) 

 
Figure 3:  The private key on the sender side 

 

 

 

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 
 

94 

2) Press the button “exchange public key” 

  

The public key would be calculated on sender side (as 

shown in Fig4.), and send directly to receiver side 

(shown in Fig5); 

 

 
Figure 4: Calculation of public key on sender side 

 

 Receiver side: 

After the public key is received (shown in Fig5.), the 

receiver could calculate the private key from the 

received public key when pressing the button ”retrieve 

private key”, (shown in Fig6). 

 

 
Figure 5: The received public key on the receiver side. 

 

 
 

Figure 6: Calculation of the private key from the received public key 

on the receiver side 

 

B. Encryption 

Plaintext: “amanie” If the parameters of private key are: initial 

value=8, modulus=500, multiplier =7, increment=6, size=100 

(as shown in Fig7) is chosen, the dynamic generated “ASCII 

table” which is based on the private key is shown in Fig.8.  

 

The ciphertext would be= “0803 2800 1705 0700 0119 0F01” 

as shown in Fig9;  In decryption process we will obtain the 

plaintext= “amanie” as shown in Fig10; 

 

 

 

Figure7: Plain text and private key 

 

http://en.wikipedia.org/wiki/Modulo_operation


International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 
 

95 

 

Figure 8: The generated ASCII table 

 

 

Figure 9:  Ciphertext. 

 
Figure 10.  The produced plaintext on receiver side 

 

IV. CONCLUSION 
In conclusion, we feel that FSO technology aided by 

suitable channel coding techniques can be used to realize 

reliable high speed communication short distance links 

across distances less than four kilometres under good as 

well as adverse weather conditions with the level of data 

integrity being as good as is required by the application. 

This development can help in widespread deployment of 

this attractive technology with its benefits of enabling 

high data-rate communication with the advantages of 

quick deployment time, high security and no spectral 

licensing requirements.    

 

V. REFERENCES 
 

[1] Bayaki, E.; Schober, R., "Performance and Design of Coherent and 

Differential Space-Time Coded FSO Systems," Lightwave Technology, 

Journal of , vol.30, no.11, pp.1569,1577, June1, 2012 

[2] Safari, M.; Uysal, M., "Do We Really Need OSTBCs for Free-Space 

Optical Communication with Direct Detection?," Wireless 

Communications, IEEE Transactions on , vol.7, no.11, pp.4445,4448, 

November 2008  

[3] Islam, M.S.; Majumder, S.P., "Performance analysis of a free space 

optical link using Alamouti type Space Time Block Code with weak 

turbulent condition," Electrical & Computer Engineering (ICECE), 2012 

7th International Conference on , vol., no., pp.287,290, 20-22 Dec. 2012 

[4] Etty J. Lee  and Vincent W. S. Chan, Part 1: Optical Communication 

Over the Clear Turbulent Atmospheric Channel Using Diversity. 

[5] Fang Xu, Ali Khalighi, Patrice Causs´e, Salah Bourennane: Channel 

coding and time-diversity for optical wireless links. 

[6] X. Zhu and J. M. Kahn. “Free-Space Optical Communication Through 

Atmospheric Turbulence Channels,” IEEE Trans. Commun., 50:1293– 

1300, August 2002. 

[7] D. Kedar and S. Arnon, “Urban Optical Wireless Communication 

Networks: The Main Challenges and Possible Solutions.” IEEE 

Commun. Mag., 42:S2–S7, May 2004. 

[8] L. C. Andrews and R. L. Phillips, Laser Beam Propagation through 

Random Media (SPIE Press, Bellingham,Washington, 2005), 2nd ed. 

[9] Murat Uysal, Jing (Tiffany) Li and Meng Yu, “Error Rate Performance 

Analysis of Coded Free-Space Optical Links over Gamma-Gamma 

Atmospheric  Turbulence Channels,”  IEEE Transactions on Wireless 

Communication, Vol. 5, NO. 6, June 2006 

 


